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Abstract

Fluid-structure interaction (FSI) plays a crucial role in cardiac mechanics, where the strong coupling between
fluid flow and deformable structures presents significant computational challenges. The immersed boundary (IB)
method efficiently handles large deformations and contact without requiring mesh regeneration. However, solving
complex FSI problems demands high computational efficiency, making GPU acceleration essential to leverage massive
parallelism, high throughput, and memory bandwidth. We present a fully GPU-accelerated algorithm for the IB
method to solve FSI problems in complex cardiac models. The Navier-Stokes equations are discretized using the
finite difference method, while the finite element method is employed for structural mechanics. Traditionally, IB
methods are not GPU-friendly due to irregular memory access and limited parallelism. The novelty of this work lies
in eliminating sparse matrix storage and operations entirely, significantly improving memory access efficiency and
fully utilizing GPU computational capability. Additionally, the structural materials can be modeled using general
hyperelastic constitutive laws, including fiber-reinforced anisotropic biological tissues such as the Holzapfel-Ogden
(HO) model. Furthermore, a combined geometric multigrid solver is used to accelerate the convergence. The full FSI
system, consisting of millions of degrees of freedom, achieves a per-timestep computation time of just 0.1 seconds.
We conduct FSI simulations of the left ventricle, mitral valve, and aortic valve, achieving results with high consistency.
Compared to single-core CPU computations, our fully GPU-accelerated approach delivers speedups exceeding 100
times.
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1 Introduction

The plan of this article is as follows. In Section 2, we provide an overview of the Navier-Stokes equations, immersed
boundary formulations, and the finite element method, discussing each independently. In Section 3, we present the
mathematical formulation for coupling these methods, highlighting the benefits of the three adaptations on algorithms
optimized for GPU architecture. To validate the accuracy and efficiency of the proposed approach, we conduct four test
cases in Section 4. These include Cook’s membrane, intraventricular flow, aortic valve, and mitral valve simulations.
We employ complex constitutive models, such as the Holzapfel–Ogden model, which incorporates fiber-reinforced
materials. Finally, in Section 5, we summarize our findings and highlight the strengths of our approach in capturing
complex physics and efficiently handling large-scale FSI simulations.

2 Continuous equations of motion

In the framework of the IB method, the continuous formulation of the FSI system describes the coupled dynamics
between the fluid and the immersed structure within a fixed domain. Let Ω be the computational domain, and
𝐵𝑡 be the region occupied by the structure at time 𝑡. The computational domain uses fixed Eulerian coordinates
x = (𝑥1, 𝑥2, 𝑥3) ∈ Ω, while the reference configuration of the structure employs Lagrangian reference coordinates
X = (𝑋1, 𝑋2, 𝑋3) ∈ 𝐵𝑟, where 𝐵𝑟 is the region occupied by the structure at time 𝑡 = 0. The transformation from the
reference region 𝐵𝑟 to the current region 𝐵𝑡 is described by a bijection X(X, 𝑡) : 𝐵𝑟 ↦→ 𝐵𝑡, which characterizes the
deformation of the structure, such that

x = X(X, 𝑡) for all X ∈ 𝐵𝑟 .

Thus, the deformation gradient tensor is defined as:

F (X, 𝑡) = 𝜕X

𝜕X
(X, 𝑡),

and 𝐽 (X, 𝑡) = det(F (X, 𝑡)) is the determinant of F (X, 𝑡).
Within the Eulerian formulation, the Cauchy stress tensor σ(x, 𝑡) of flexible structures in an FSI system is expressed

as:

σ(x, 𝑡) = σ 𝑓 (x, 𝑡) +
{
σ𝑒(x, 𝑡), x ∈ 𝐵𝑡,

0, x ∈ Ω/𝐵𝑡,

where σ𝑒(x, 𝑡) is the elastic component of the stress tensor that exists only in the solid domain, and σ 𝑓 (x, 𝑡) is the
fluid-like component of the stress tensor that exists everywhere in Ω. To describe the elastic properties of the structure
in the Lagrangian coordinate system, σ𝑒(x, 𝑡) is written as

σ𝑒(x, 𝑡) = σ𝑒(X(X, 𝑡), 𝑡) = 𝐽−1(X, 𝑡)P(X, 𝑡)F 𝑇 (X, 𝑡),

where P(X, 𝑡) represents the first Piola-Kirchhoff stress tensor. For the hyperelastic constitutive model considered here,
we determine P(X, 𝑡) from a strain energy function𝑊 (F (X, 𝑡)) by

P(X, 𝑡) = 𝜕𝑊 (F (X, 𝑡))
𝜕F (X, 𝑡) .

Given that we consider the fluid to be Newtonian, then σ 𝑓 (x, 𝑡) is

σ 𝑓 (x, 𝑡) = −𝑝(x, 𝑡)I + 𝜇
[
∇u(x, 𝑡) + (∇u(x, 𝑡))𝑇

]
.
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Here, u(x, 𝑡) represents the Eulerian velocity field, and 𝑝(x, 𝑡) represents the pressure field, which also acts as the
Eulerian Lagrange multiplier to enforce the incompressibility constraint ∇ · u = 0, I denotes the identity tensor, and 𝜇

is the dynamic viscosity.
Eulerian and Lagrangian variables are coupled through integral transforms with delta function kernels in the IB

framework. Let 𝛿(x) = Π𝑑
𝑖=1𝛿(𝑥𝑖) denote the 𝑑-dimensional delta function, where 𝑥𝑖 are the Cartesian components

of the vector x.1,2 Let f (x, 𝑡) be the Eulerian elastic force density, F(X, 𝑡) be the Lagrangian elastic force density, and
U(X, 𝑡) be the Lagrangian velocity field. Based on the definitions of the interpolation operator I(·, ·) and spreading
operator E(·, ·) provided in,3 we establish the relationships between F(X, 𝑡) and f (x, 𝑡), as well as u(x, 𝑡) and U(X, 𝑡)
as follows:

f (x, 𝑡) = E(X, F) =
∫
𝐵𝑟

F(X, 𝑡)𝛿(x − X(X, 𝑡)) 𝑑X, (1)

U(X, 𝑡) = I(X, u) =
∫
Ω
u(x, 𝑡)𝛿 (x − X(X, 𝑡)) 𝑑x. (2)

The present study is based on the IB method derived by Boffi et al. ,4 find u(x, 𝑡), 𝑝(x, 𝑡), X(x, 𝑡) which satisfy

𝜌
𝐷u
𝐷𝑡

(x, 𝑡) + ∇𝑝(x, 𝑡) − 𝜇Δu(x, 𝑡) = f (x, 𝑡), in Ω × [0, 𝑇],
∇ · u(x, 𝑡) = 0, in Ω × [0, 𝑇],∫

𝐵𝑟

F(X, 𝑡) · V(X)𝑑X = −
∫
𝐵𝑟

P(X, 𝑡) : ∇XV(X)𝑑X, in 𝐵𝑟 × [0, 𝑇],

f (x, 𝑡) = E(X(X, 𝑡), F(X, 𝑡)), in 𝐵𝑟 × [0, 𝑇],
𝜕X(X, 𝑡)

𝜕𝑡
= U(X, 𝑡) = I(X(X, 𝑡), u(x, 𝑡)), in Ω × [0, 𝑇], (3)

where 𝜌 be the density of the FSI system. And imposed the initial and boundary conditions{
u(x, 𝑡) = w(x, 𝑡), in 𝜕Ω × [0, 𝑇],
u(x, 0) = u0(x), in Ω.

(4)

Here, 𝐷u
𝐷𝑡
(x, 𝑡) = 𝜕u

𝜕𝑡
(x, 𝑡) + (u(x, 𝑡) · ∇)u(x, 𝑡), V(X) is any smooth function.

3 Constitutive laws

The Cauchy stress of the immersed elastic structure is decomposed in the traditional IB method as:4–6

σ = σ𝑣 − 𝑝I +
{
0, x ∈ Ω 𝑓

𝑡 ,

σ𝑒, x ∈ Ω𝑠
𝑡 .

(5)

where σ𝑣 = 𝜇(∇v + ∇v𝑇 ) is the deviatoric viscous stress and σ𝑒 is the elastic stress. To address the poor numerical
results7 that may arise from Eq. (5), σ𝑒 is decomposed as:

σ𝑒 = dev[σ𝑒] − 𝜋stabI,

where dev[σ𝑒] represents the deviatoric stress component, and 𝜋stabI represents the volumetric stress component,
which serves as a stabilization term that acts like an additional pressure in solid region. Based on,7 𝜋stab depends on
the volumetric energy 𝑈 (𝐽), which is solely related to the volume changes of the structure.

𝜋stab = −𝜕𝑈 (𝐽)
𝜕𝐽

.
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In this paper, a simple form of 𝑈 (𝐽) is chosen as 𝑈 (𝐽) = 𝜅stab
2 (ln𝐽)2, where the value of 𝜅stab depends on the numerical

Poisson ratio 𝜈stab, and 𝜅stab =
2𝐺𝑇 (1+𝜈stab )
3(1−2𝜈stab ) . Thus, for hyperelastic materials, based on σ𝑒 = 1

𝐽

𝜕Ψ(F )
𝜕F

F 𝑇 , it follows that:

Ψ(F ) = 𝑊 (F ) + 𝑈 (𝐽),

where𝑊 (F ) is the volume-preserving components, 𝑈 (𝐽) is the volume-changing component.
To ensure material frame invariance, this study considers anisotropic materials and, based on,7,8 defines their

strain energy function Ψ in the following general form using the right Cauchy-Green tensor C = F 𝑇F :

Ψ = 𝑊 (𝐼1, 𝐼4 𝑓 , 𝐼4𝑠, 𝐼5 𝑓 , 𝐼8 𝑓 𝑠) + 𝑈 (𝐽),

where 𝐼1 = tr(C), 𝐼4 𝑓 = e 𝑓 · (Ce 𝑓 ), 𝐼5 𝑓 = e 𝑓 · (C2e 𝑓 ), 𝐼4𝑠 = e𝑠 · (Ce𝑠), 𝐼8 𝑓 𝑠 = e 𝑓 · (Ce𝑠), e 𝑓 represents the fiber direction
in the reference configuration, and e𝑠 represents the sheet direction in the reference configuration.

Next, to remove volume change information, the material used in this study introduces modified invariants based
on 𝐼1, as follows:

�̄�1 = 𝐽−2/3𝐼1.

Therefore, the Ψ represented by the modified invariant �̄�1 is:

Ψ = �̄� ( �̄�1, 𝐼4 𝑓 , 𝐼4𝑠, 𝐼5 𝑓 , 𝐼8 𝑓 𝑠) + 𝑈 (𝐽).

Finally, we will briefly introduce several common constitutive models, including their free energy functions and the
corresponding first Piola-Kirchhoff stress tensors.

• Modified standard reinforcing model:7

Ψ1 =
𝐺𝑇

2 ( �̄�1 − 3) + 𝐺𝑇 − 𝐺𝐿

2 (2𝐼4 𝑓 − 𝐼5 𝑓 − 1)

+ 𝐸𝐿 + 𝐺𝑇 − 4𝐺𝐿

8 (𝐼4 𝑓 − 1)2 + 𝜅stab
2 (ln𝐽)2, (6)

P1 = 𝐺𝑇 𝐽
−2/3(F − 𝐼1

3 F −𝑇 ) + (𝐺𝑇 − 𝐺𝐿) (2Fe 𝑓 ⊗ e 𝑓 − Fe 𝑓 ⊗ e 𝑓C − FCe 𝑓 ⊗ e 𝑓 )

+ 𝐸𝐿 + 𝐺𝑇 − 4𝐺𝐿

2 (𝐼4 𝑓 − 1)Fe 𝑓 ⊗ e 𝑓 + 𝜅stabln(𝐽)F −𝑇 , (7)

where 𝐺𝑇 , 𝐺𝐿, 𝐸𝐿 are material constants.

• Fiber-reinforced hyperelastic model 1:9

Ψ2 = 𝐶1( �̄�1 − 3) + 𝑎 𝑓

2𝑏 𝑓

(
exp

[
𝑏 𝑓 (𝐼∗4 𝑓 − 1)2

]
− 1

)
+ 𝜅stab

2 (ln𝐽)2, (8)

P2 = 2𝐶1𝐽
−2/3(F − 𝐼1

3 F −𝑇 ) + 2𝑎 𝑓 (𝐼∗4 𝑓 − 1)exp
[
𝑏 𝑓 (𝐼∗4 𝑓 − 1)2

]
Fe 𝑓 ⊗ e 𝑓 + 𝜅stabln(𝐽)F −𝑇 , (9)

where 𝐼∗4 𝑓 = max(𝐼4 𝑓 , 1), 𝐶1, 𝑎 𝑓 , 𝑏 𝑓 are the material constants.

• Fiber-reinforced hyperelastic model 2:10

Ψ3 = 𝐶10
(exp [

𝐶01( �̄�1 − 3)
]
− 1) + 𝑎 𝑓

2𝑏 𝑓

(
exp

[
𝑏 𝑓 (𝐼4 𝑓 − 1)2

]
− 1

)
+ 𝜅stab

2 (ln𝐽)2, (10)

P3 = 2𝐶10𝐶01exp
[
𝐶10( �̄�1 − 3)

]
𝐽−2/3

(
F − 𝐼1

3 F −𝑇
)
+ 2𝑎 𝑓 (𝐼4 𝑓 − 1)exp

[
𝑏 𝑓 (𝐼4 𝑓 − 1)2

]
Fe 𝑓 ⊗ e 𝑓 + 𝜅stabln(𝐽)F −𝑇 ,

(11)

where 𝐶10, 𝐶01 𝑎 𝑓 , 𝑏 𝑓 are the material constants.
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• Holzapfel-Ogden (HO) model:11

Ψ4 =
𝑎

2𝑏exp[𝑏( �̄�1 − 3)] +
∑︁
𝑖= 𝑓 ,𝑠

𝑎𝑖

2𝑏𝑖
{
exp

[
𝑏𝑖 (𝐼∗4𝑖 − 1)2

]
− 1

}
(12)

+
𝑎 𝑓 𝑠

2𝑏 𝑓 𝑠

{exp
[
𝑏 𝑓 𝑠 (𝐼8 𝑓 𝑠)2

]
− 1} + 𝜅stab

2 (ln𝐽)2, (13)

P4 = 𝑎exp
[
𝑏( �̄�1 − 3)

]
𝐽−2/3(F − 𝐼1

3 F 𝑇 ) +
∑︁
𝑖= 𝑓 ,𝑠

2𝑎𝑖 (𝐼∗4𝑖 − 1)exp
[
𝑏𝑖 (𝐼∗4𝑖 − 1)2

]
Fe𝑖 ⊗ e𝑖 (14)

+ 2𝑎 𝑓 𝑠 𝐼8 𝑓 𝑠exp
[
𝑏 𝑓 𝑠 (𝐼8 𝑓 𝑠)2

]
Fe 𝑓 ⊗ e𝑠 + 𝜅stabln(𝐽)F −𝑇 , (15)

where 𝐼∗4𝑖 = max(𝐼4𝑖, 1), 𝑎, 𝑏, 𝑎𝑖, 𝑏𝑖, 𝑎 𝑓 𝑠, and 𝑏 𝑓 𝑠 are material constants, with 𝑖 = 𝑓 , 𝑠.

4 Numerical Discretization

4.1 Temporal Discretization

For system (3), we begin by considering the temporal semi-discretization. The time interval [0, 𝑇] is partitioned into
𝑁 uniformly spaced, non-overlapping subintervals (𝑡𝑛, 𝑡𝑛+1], where 𝑛 = 1, 2, ..., 𝑁, with a constant time step size
𝑡𝑛 − 𝑡𝑛−1 = Δ𝑡. Here, (·)𝑛 denotes the value of (·) at time 𝑡𝑛. In this work, the backward Euler time-stepping scheme
is employed for the temporal discretization of system (3) from,3 and the resulting semi-discrete system is given as
follows:

𝜌(u
𝑛+1 − u𝑛

Δ𝑡
+ u𝑛 · ∇u𝑛+1) − 𝜇Δu𝑛+1 + ∇𝑝𝑛+1 = f𝑛+1, in Ω,

∇ · u𝑛+1 = 0, in Ω,∫
𝐵𝑟

F𝑛+1 · V(X)𝑑X = −
∫
𝐵𝑟

P𝑛+1 : ∇XV(X)𝑑X, in 𝐵𝑟

f𝑛+1 = E(X𝑛, F𝑛+1), in 𝐵𝑟,

X𝑛+1 − X𝑛

Δ𝑡
= I(X𝑛, u𝑛), in Ω. (16)

System (3) employs an explicit coupling method to handle fluid-structure interactions. Although a large number of
implicit time-stepping methods have been proposed, efficient, fast, and general-purpose implicit solvers remain scarce.
As a result, explicit coupling methods are widely adopted in large-scale numerical simulations due to their simplicity
and computational efficiency. Building on this advantage, we will further develop a highly efficient IB method based
on a fully GPU-accelerated algorithm.

4.2 Spatial Discretization

In the context of spatial discretization for this explicit numerical scheme, we employ the approach developed by Griffith
and Luo,5

which is demonstrated in Ref.3 Here, the Navier-Stokes equations are decomposed into a Helmholtz equation and
a Poisson equation using the Chorin’s projection method.

Given u𝑛 ∈ Wℎ, X𝑛 ∈ Vℎ, find u𝑛+1 ∈ Wℎ, 𝑝𝑛+1 ∈ 𝑄ℎ, X𝑛+1 ∈ Vℎ which satisfy
𝜌

Δ𝑡
(u∗ − u𝑛) − 𝜇Δℎu∗ = f𝑛+1, (17)

Δℎ𝑝
𝑛+1 =

1
Δ𝑡

∇ℎ · u∗, (18)

u𝑛+1 = u∗ − Δ𝑡∇ℎ𝑝
𝑛+1, (19)
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∫
𝐵𝑟

F𝑛+1ℎ · V(X) 𝑑X = −
∫
𝐵𝑟

P𝑛+1
ℎ : ∇XV(X) 𝑑X, (20)

f𝑛+1 =
∫
𝐵𝑟

F𝑛+1ℎ 𝛿(x − X(X𝑛
ℎ)) 𝑑X, (21)

X𝑛+1
ℎ

− X𝑛
ℎ

Δ𝑡
=

∫
Ω
u𝑛+1𝛿(x − X𝑛

ℎ) 𝑑x (22)

Here, V(X) is any function belongs to Vℎ. u∗ is a tentative velocity. When imposed the boundary condition{
u∗ = 0, in 𝜕Ω,

u𝑛+1 · n = 0, in 𝜕Ω.
(23)

4.3 Discretization of the Navier-Stokes equations

For the remainder of the statement of the discretization, the Eulerian variables are discreted with the marker-and-cell
staggered-grid scheme, using uniform cell of length Δ𝑥 in each coordinate direction. There are several prominent
advantages of this staggered scheme, such as its mass conservation properties, efficiency of linear algebra, and inf-sup
stability.

4.4 Eulerian-Lagrangian coupling operators

Forces are transferred from the structural mesh to the Cartesian grid by spreading. Following the discretization
described in subsection 2.3 and a projection onto the finite element space, the force are

𝑓 1
𝑖+ 1

2 , 𝑗,𝑘
=

∫
𝐵𝑟

𝐹1(X)𝛿ℎ(x𝑖+ 1
2 , 𝑗,𝑘

− Xℎ(X, 𝑡))𝑑X, (24)

𝑓 2
𝑖, 𝑗+ 1

2 ,𝑘
=

∫
𝐵𝑟

𝐹2(X)𝛿ℎ(x𝑖, 𝑗+ 1
2 ,𝑘

− Xℎ(X, 𝑡))𝑑X, (25)

𝑓 3
𝑖, 𝑗,𝑘+ 1

2
=

∫
𝐵𝑟

𝐹3(X)𝛿ℎ(x𝑖, 𝑗,𝑘+ 1
2
− Xℎ(X, 𝑡))𝑑X, (26)

velocities are transferred from the Cartesian grid to the structural mesh by interpolation to an intermediate Lagrangian
velocity U𝐼𝐵:

U𝐼𝐵,1(X, 𝑡) =
∑︁
𝑖, 𝑗,𝑘

𝑢1
𝑖+ 1

2 , 𝑗,𝑘
𝛿ℎ(x𝑖+ 1

2 , 𝑗,𝑘
− Xℎ(X, 𝑡))Δ𝑥3, (27)

U𝐼𝐵,2(X, 𝑡) =
∑︁
𝑖, 𝑗,𝑘

𝑢2
𝑖, 𝑗+ 1

2 ,𝑘
𝛿ℎ(x𝑖, 𝑗+ 1

2 ,𝑘
− Xℎ(X, 𝑡))Δ𝑥3, (28)

U𝐼𝐵,3(X, 𝑡) =
∑︁
𝑖, 𝑗,𝑘

𝑢3
𝑖, 𝑗,𝑘+ 1

2
𝛿ℎ(x𝑖, 𝑗,𝑘+ 1

2
− Xℎ(X, 𝑡))Δ𝑥3, (29)

(30)

Note that U𝐼𝐵 is defined for all points in the structural mesh (in particular, at the quadrature points) but is typically not
in 𝑉ℎ. This is the semidiscretization of Eq. (??). The remaining integrate equation arises from requiring that∫

𝐵𝑟

Uℎ(X, 𝑡) · 𝜙(X)𝑑X =

∫
𝐵𝑟

U𝐼𝐵 (X, 𝑡) · 𝜙(X)𝑑X,

for all test functions 𝜙(X) ∈ 𝑉ℎ, i.e., 𝑈ℎ is the projection of U𝐼𝐵 onto the finite element space. Further, note that if we
discrete the integrals in Eq.(??) and Eq. (??) with the same quadrature formula then the spreading and interpolation
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operators are discretely adjoint. For a through discussion on the adjointness of these two operators, see Griffith and
Luo.5

Define the nodal quadrature rule as N𝑞 = {X𝑞, 𝑤𝑞}𝑚𝑞=1 in which X𝑞 is a node of Γℎ and 𝑤𝑞 =
∫
𝜙𝑞(X) · 1𝑑X.

Compute the components of U𝐼𝐵 by evaluating 𝛿ℎ at each node’s displaced location Xℎ(X𝑞) for each X𝑞, 𝑤𝑞 ∈ N𝑞:

𝑈
𝐼𝐵,1
𝑞 =

∑︁
𝑖, 𝑗,𝑘

𝑢1
𝑖+ 1

2 , 𝑗,𝑘
𝛿ℎ(x𝑖+ 1

2 , 𝑗,𝑘
− Xℎ(X𝑞))Δ𝑥3

𝑈
𝐼𝐵,2
𝑞 =

∑︁
𝑖, 𝑗,𝑘

𝑢2
𝑖, 𝑗+ 1

2 ,𝑘
𝛿ℎ(x𝑖, 𝑗+ 1

2 ,𝑘
− Xℎ(X𝑞))Δ𝑥3

𝑈
𝐼𝐵,3
𝑞 =

∑︁
𝑖, 𝑗,𝑘

𝑢3
𝑖, 𝑗,𝑘+ 1

2
𝛿ℎ(x𝑖, 𝑗,𝑘+ 1

2
− Xℎ(X𝑞))Δ𝑥3

For each FE basis function compute a mean force contribution

F𝑖 = −
∑︁

(X𝑞,𝑤𝑞 ) ∈H𝑞

P𝑒(X𝑞) : ∇X𝜙𝑖 (X𝑞)𝑤𝑞

Spread each component of the mean force contribution at each node’s displaced location Xℎ(X𝑞) as

𝑓 1
𝑖+ 1

2 , 𝑗,𝑘
=

∑︁
(𝑚𝑎𝑡ℎ𝑏 𝑓 𝑋𝑞,𝑤𝑞∈N𝑞 )

F1𝑞𝛿ℎ(x𝑖+ 1
2 , 𝑗,𝑘

− Xℎ(X𝑞))

𝑓 2
𝑖, 𝑗+ 1

2 ,𝑘
=

∑︁
(𝑚𝑎𝑡ℎ𝑏 𝑓 𝑋𝑞,𝑤𝑞∈N𝑞 )

F2𝑞𝛿ℎ(x𝑖, 𝑗+ 1
2 ,𝑘

− Xℎ(X𝑞))

𝑓 2
𝑖, 𝑗,𝑘+ 1

2
=

∑︁
(𝑚𝑎𝑡ℎ𝑏 𝑓 𝑋𝑞,𝑤𝑞∈N𝑞 )

F3𝑞𝛿ℎ(x𝑖, 𝑗,𝑘+ 1
2
− Xℎ(X𝑞))

The calculation yields fℎ.

5 Benchmarks

The Cook’s membrane problem is a classical benchmark in incompressible elastic solid mechanics. To assess the
computational performance of the fully GPU-implemented IB method, we follow the setup in7 to embed the three-
dimensional anisotropic Cook’s membrane into an incompressible Newtonian fluid, formulating a fluid-structure
interaction system, which is then numerically solved using the IB method. The configuration of the computational
domain Ω, structural dimensions, and loading conditions is shown in Fig. 1.

The boundary conditions for this problem consist of a fixed left face, where constraints are enforced using a penalty
parameter of 𝜅 = 106. A vertical traction of 6.25 dyn

cm2 is applied to the right face, increasing gradually according to the
polynomial function 𝑞(𝑡) = −2( 𝑡

𝑇1 )
3 + 3( 𝑡

𝑇1 )
2 and reaching its maximum at time 𝑇1. The simulation continues until

time 𝑇 𝑓 to ensure the system reaches equilibrium. All other faces are subject to zero traction conditions. A summary of
the relevant physical and numerical parameters is provided in Table 1.

In this case, the computational domain Ω is discretized using a Cartesian grid comprising 𝑁 = 64 cells along each
coordinate axis. A tetrahedral mesh is utilized for the discretization of the structure, and the forces and displacements
are discretized using 𝑃2 finite elements. The degrees of freedom (DoFs) for the solid range from 𝑚 = 5004 to
𝑚 = 282, 489. Furthermore, the time step for the simulation is set to Δ𝑡 = 0.001s.

To verify the accuracy of our computational results, we primarily focus on the deformation of the Cook’s membrane,
the determinant of the element Jacobian matrix (𝐽), and the vertical displacement at the upper right corner 𝐴 =

(7.06 cm, 8.0 cm, 4.5 cm) of the membrane. Fig. 2 illustrates the deformation of the Cook membrane at the final time
from different angles. The results appear to be consistent with those in reference.7 Fig. 3a presents the computational
results for 𝐽. Upon examining the figure, it is clear that 𝐽 is uniformly close to 1 throughout the entire solid. Fig. 3b
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Figure 1: Setup of the anisotropic Cook’s membrane benchmark: The gray region represents the fixed computational domain
Ω, while the red region corresponds to the deformable structure.

Symbol Value Unit

𝜌 1.0 g
cm3

𝑇1 14 s
𝑇 𝑓 35 s
𝜇 0.16 dyn·s

cm2

𝐺𝑇 8.0 dyn
cm2

𝐺𝐿 160.0 dyn
cm2

𝐸𝐿 1200.0 dyn
cm2

𝜅stab 112 dyn
cm2

e 𝑓
1√
3 (1, 1, 1) -

Table 1: Parameters for the anisotropic Cook’s membrane benchmark

compares the volume change rates of solids calculated by our method under various degrees of freedom with those
reported in reference.7 The analysis reveals that the volume change rates derived from our calculations range from
−0.00062% to −0.0088%, closely aligning with the data presented in reference.7 Of particular note, the results
obtained using 𝑃2 elements in our study are nearly identical to those calculated using 𝑄1 elements as documented in
reference.7 Fig. 4a illustrates the variation of the displacement of point 𝐴 along the y-axis over time. Fig. 4b shows the
variation in the maximum displacement of point 𝐴 along the 𝑦-axis with different Dofs of the solid. Furthermore, Fig. 4b
demonstrates that the displacement of point 𝐴 in the 𝑦-axis, as calculated by our method, is essentially consistent with
the results reported in the literature.7 All of these results substantiate the accuracy of our algorithm.
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Figure 2: Deformations of the anisotropic Cook’s membrane at different angles.

(a) Jacobian J (b)Volume change of the Cook’s membrane model under Different
number of Solid’s Dof.

Figure 3: Volume conservation for the anisotropic Cook’s membrane benchmark.

6 Cardiac Dynamics

6.1 Dynamic left ventricle model

As one of the four chambers of the heart, the left ventricle (LV) plays a crucial role in the heart’s pumping function.
This section is based on a previously developed image-based geometric model,12 similar to many existing studies,13–15
considers only a portion of the LV (see Fig. 5) to investigate a simplified cardiac mechanics problem relevant to
physiological conditions.

In the LV model shown in Fig. 5, zero normal and circumferential displacements are applied at the base, allowing
only radial expansion within the plane of the base. Meanwhile, the internal blood pressure is modeled by a uniform
pressure applied to the endocardial surface, varying according to the prescribed waveform 𝑝endo(𝑡) as referenced in.11
The maximum endocardial pressures during diastole and systole are 1067 Pa and 14530 Pa, respectively, as defined

9



(a)Displacement of point A over time in a solid mesh with 282,489
Nodes and a fluid mesh divided into a 64×64×64 grid.

(b) Difference numbers of Dof on the displacement of Point A for
the Cook’s membrane model.

Figure 4: Corner 𝑦-displacement for the anisotropic Cook’s membrane benchmark.

below.

𝑝endo(𝑡) =



1067 𝑡
0.2 Pa, if 𝑡 < 0.2,

1067 Pa, if 0.2 < 𝑡 < 0.5,

1067 + 13460
(
1 − exp

(
− (𝑡−0.5)2

0.004

))
Pa, if 0.5 < 𝑡 < 0.65,

1067 + 13460
(
1 − exp

(
− (0.8−𝑡)2

0.004

))
Pa, if 0.65 < 𝑡 < 0.8.

We model the left ventricular myocardium as a nonlinear, anisotropic hyperelastic material. To account for the effect
of active tension, the first Piola-Kirchhoff stress tensor of the myocardium is modelled as the sum of the active and
passive stress,

P𝑒 =
𝜕Ψ

𝜕F
+ P𝑎.

When the passive stress component is described using the HO model, the active stress component P𝑎 is given by:

S𝑎 = 𝑇 (𝑡, 𝐼4 𝑓 )e 𝑓 ⊗ e 𝑓 ,

where the scalar tension 𝑇 = 𝑇 (𝑡, 𝐼4 𝑓 ) is a function of time 𝑡 and 𝐼4 𝑓 . Specifically,

𝑇 (𝑡, 𝐼4 𝑓 ) = 𝑇𝑎(𝑡)
(
1 + 4.9(

√︁
𝐼4 𝑓 − 1)

)
,

where 𝑇𝑎(𝑡) is the active tension, which is determined empirically. Based on the maximum active tension value of a
healthy LV reported in,14 we set its expression according to,11 as follows:

𝑇𝑎(𝑡) =


0 Pa, if 𝑡 < 0.5,
84260

(
1 − exp

(
−(𝑡−0.5)2

0.005

))
Pa, if 0.5 < 𝑡 < 0.65,

84260
(
1 − exp

(
−(0.8−𝑡)2

0.005

))
Pa, if 0.65 < 𝑡 < 0.8.

The detailed physical and numerical parameters are listed in Table 2.
For this model, we simulated three consecutive cardiac cycles, corresponding to the diastolic and systolic phases.

Fig. 7 illustrates the deformation of the left ventricle, where Fig. 7b shows the left ventricle in diastole, and Fig. 7c shows
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Figure 5: Setup of setting up the LV model in the IB framework: The gray region represents the fixed computational domain
Ω, while the red region corresponds to the deformable left ventricle.

(a) Fiber: e 𝑓 (b) Fiber: e𝑠

Figure 6: Fiber distribution in the LV model. Blue arrows indicate the direction of fibers, and red represents the LV model.

the left ventricle in systole. Fig. 8 shows the deformation of a left ventricular slice and the velocity streamlines at 0.12 s,
0.45 s, and 0.72 s. From the Fig. 8, it can be seen that at 0.12 s and 0.45 s, the LV is in the diastolic phase, during
which blood flows into the LV. At 0.45 s, the LV reaches near-maximal diastole, and the velocity streamline plot shows
a reduced flow velocity, indicating that the blood inflow rate decreases and the left ventricular volume approaches
its maximum. At 0.72 s, the LV is in the systolic phase, during which blood is ejected from the LV. This process is
consistent with the physiological motion of the LV during cardiac pumping. Fig. 9a illustrates the temporal variation of
left ventricular volume. Given the incompressibility of myocardial tissue, the left ventricular volume calculated by the
current method is consistent with that derived from a purely solid model, remaining nearly constant throughout the
cardiac cycle. Fig. 9b, in contrast, depicts the changes in left ventricular volume over time.

6.2 Aortic valve model

The aortic valve is located between the left ventricle and the aorta, controlling blood flow into the aorta and preventing
blood from flowing back, thus ensuring normal heart function. This section will delve into the physiological behavior
of the aortic valve. The aortic valve typically consists of three crescent-shaped leaflets, which exhibit highly anisotropic,
incompressible, hyperelastic, and nonlinear mechanical properties. To effectively describe these mechanical charac-
teristics, we have adopted Fiber-reinforced hyperelastic model 2 to represent the mechanical behavior of the aortic
valve leaflets. The aortic valve model used in this study is based on the porcine heart valve. The thickness of the valve
leaflets is 0.04 cm, and the length of the outer rigid circular tube surrounding the aortic valve leaflets is 13 cm, with
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Symbol Value Unit

𝜌 1.0 g
cm3

𝑇 2 s
𝜇 0.04 dyn·s

cm2

𝑎 2244.87 dyn
cm2

𝑎 𝑓 24267 dyn
cm2

𝑎𝑠 5562.38 dyn
cm2

𝑎 𝑓 𝑠 3905.16 dyn
cm2

𝑏 1.6215 -
𝑏 𝑓 1.8268 -
𝑏𝑠 0.7746 -
𝑏 𝑓 𝑠 1.695 -
𝜅s 106 -

Table 2: Parameters for the dynamic left ventricle model.

(a) Original position (b) Diastole (c) Systole

Figure 7: Schematic illustration of left ventricular deformation. The red color indicates the deformed position, while the
grey color indicates the original position.

a wall thickness of 0.15 cm and an inner radius of 1.3 cm.10, 16, 17 The complete FSI model is shown in Fig. 11. In the
numerical calculation, the solid model is discretized into 229,865 tetrahedral elements and 7669 nodes, while the fluid
domain is discretized into 80 × 80 × 128 Cartesian grid elements. The relevant physical and numerical parameters is
provided in Table 4.

For this problem, the right end of the outer tube is the inlet, corresponding to the left ventricle, and the left end is
the outlet, corresponding to the aorta. The relevant boundary conditions are as follows:

• The physiological pressure of the left ventricle is applied at the inlet of the fluid region to drive blood flow through
the aortic valve, with the left ventricular pressure curve shown over one cardiac cycle in Fig. 12a.

• The outlet of the fluid region uses a three-element Windkessel model to apply dynamic pressure loading, as
shown in Fig. 12b, driving the aortic valve model. The parameters of the Windkessel model include characteristic
resistance 𝑅𝑐 = 0.033 mmHgml−1, peripheral resistance 𝑅𝑝 = 0.79 mmHg ·𝑚𝑙−1, arterial compliance 𝐶 =

12



(a) 0.12 s (b) 0.45 s (c) 0.72 s

Figure 8: Deformation of a left ventricular slice and fluid velocity streamlines at different times.

(a) Volume (b) Capacity

Figure 9: Time-dependent changes in left ventricular volume and ventricular capacity.

Table 3: Profiling results that identify the hot-spots in the present IB method.

CPU-GPU Heterogeneous Full GPU (Present)

(%) (s) (%) (s)

Fluid Solver (Poisson equation) 71.35 10827.8 67.6 50.1
Fluid Solver (Helmholtz equation) 26.99 4095.58 31 22.8
Fluid Solver (Convective Term) 0.34 51.59 0 0.9
Interpolation 1.25 189.31 1.4 0.93
Spreading 1.25 189.31 1.4 0.93
Solid Solver 1.25 189.31 1.4 0.93
Solid boundary 1.63

90 ml·mmHg−1, with an initial pressure of 𝑃𝑊𝑘 = 85 mmHg, and 𝑃𝐴𝑜 = 𝑃𝑊𝑘, while the outlet pressure is set to
0. These parameter values are referenced from.10, 18
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Figure 10: Setup of setting up the AV model in the IB framework: the gray region represents the fixed computational
domain Ω, while the red region corresponds to the deformable aortic valve.

Figure 11: Fiber distribution in the AV model. Blue arrows indicate the direction of fibers, and red represents the AV leaflets.

Symbol Value Unit

𝜌 1.0 g
ml

𝑇 1.635 s
𝜇 4 cP

𝐶10 1210 Pa
𝐶01 7.99 -
𝑎 𝑓 24230 Pa
𝑏 𝑓 57.62 -
𝜅s 106 -

Table 4: Parameters for the AV model.

• Zero pressure boundary conditions are applied to the remaining boundaries of the fluid region.
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• The outer tube of the aortic valve is fixed, and a penalty parameter of 𝜅 = 5 × 106 is applied.

(a) Left ventricular pressure curve at the inlet. (b)Windkessel model at the outlet

Figure 12: Boundary conditions applied within the AV IB framework.

6.3 Mitral valve model

The mitral valve is located between the left atrium and the left ventricle, controlling blood flow into the left ventricle
and preventing backflow, thereby ensuring normal blood circulation and reducing the burden on the heart. This
section will examine the physiological behavior of the mitral valve. The mitral valve has a complex tissue structure,
including two main valve leaflets, the mitral annulus, chordae tendineae, and papillary muscles. The valve leaflets are
asymmetrical in structure, and the mitral annulus is fixed to the left ventricular wall. The interaction between the
leaflets and the annulus prevents blood from flowing back into the left atrium during cardiac contraction. The chordae
tendineae connect the valve leaflets to the papillary muscles, primarily controlling the motion of the leaflets, while the
papillary muscles, fixed to the left ventricular wall, serve as anchor points for the chordae tendineae, regulating the
motion of the valve leaflets. To describe the highly anisotropic, incompressible, hyperelastic, and nonlinear mechanical
properties of the mitral valve leaflets, we use the Fiber-reinforced hyperelastic model 1 to characterize their constitutive
relations.9, 19 The mechanical properties of the chordae tendineae are described using a linear elastic Neo-Hookean
model:9, 19

Ψ = 𝑎( �̄�1 − 3) + 𝜅stab
2 (ln(𝐽))2,

and its first Piola-Kirchhoff stress tensor is:

P = 2𝑎𝐽−2/3(F − 𝐼1
3 F−𝑇 ) + 𝜅stabln𝐽F −𝑇 .

The thickness of the valve leaflets is 0.1 cm, and the length of the outer rigid circular tube surrounding the mitral
valve structure is 16 cm, with a radius of 3.8 cm. The complete fluid-structure interaction (FSI) model is shown in
Fig. 15. In the numerical calculation, the solid model is discreted into 734645 tetrahedral elements and 188557 nodes,
while the fluid domain is discreted into 80 × 80 × 128 Cartesian grid elements. The relevant physical and numerical
parameters is provided in Table 4.

The boundary conditions for the FSI system are set as follows:
• A pressure difference is defined between the inlet and outlet of the tube, with the transvalvular pressure difference

based on a typical human physiological pressure curve (as shown in Figure 23).
• Zero-pressure boundary conditions are applied along the remainder boundaries of the fluid region.19,20

This case does not involve the modeling of the left ventricle, so we only simulate the rapid filling phase during
diastole and the systole phase. The pressure distribution for the simulated portion of the cardiac cycle is shown in
Figure 4.
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Figure 13: Setup of setting up the MV model in the IB framework: the gray region represents the fixed computational
domain Ω, while the red region corresponds to the deformable MV.

Figure 14: Fiber distribution in the MV model. Blue arrows indicate the direction of fibers, and red represents the MV
leaflets.

7 Discussion and Conclusion

This study evaluates the performance of the nodal IB method on GPUs and explores its potential applications in cardiac
mechanics.
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